Tổn thương gan là gì? Các công bố khoa học về Tổn thương gan
Tổn thương gan là một tình trạng mà gan bị hư hại hoặc bị tổn thương do nhiều nguyên nhân khác nhau. Có thể là do sử dụng quá nhiều rượu, nhiễm virus viêm gan, ...
Tổn thương gan là một tình trạng mà gan bị hư hại hoặc bị tổn thương do nhiều nguyên nhân khác nhau. Có thể là do sử dụng quá nhiều rượu, nhiễm virus viêm gan, tác động của thuốc lá, tiếp xúc với các chất gây độc, bệnh lý nội tiết, bệnh lý di truyền hoặc liên quan đến lối sống không lành mạnh như ăn nhiều đồ ăn nhanh, ít vận động, thiếu chất xơ và chất dinh dưỡng cần thiết cho gan. Nếu không được điều trị kịp thời, tổn thương gan có thể dẫn đến viêm gan, xơ gan và các vấn đề sức khỏe nghiêm trọng khác.
Tổn thương gan có thể là do nhiều nguyên nhân khác nhau và có mức độ nghiêm trọng khác nhau. Dưới đây là một số nguyên nhân và loại tổn thương gan phổ biến:
1. Rượu và chất gây nghiện: Sử dụng quá nhiều rượu, thuốc lá và chất gây nghiện khác có thể gây tổn thương gan. Việc tiêu thụ rượu nhiều và lâu dài có thể dẫn đến viêm gan, xơ gan và ung thư gan.
2. Virus viêm gan: Các virus viêm gan như virus viêm gan A, B, C, D và E có thể tấn công gan, làm viêm gan và gây tổn thương gan. Nếu không được điều trị kịp thời, nó có thể dẫn đến viêm gan mạn tính, xơ gan và ung thư gan.
3. Thuốc và chất độc: Sử dụng quá liều hoặc sử dụng lâu dài các loại thuốc có thể gây tổn thương gan. Các loại thuốc gây tổn thương gan bao gồm paracetamol, thuốc chống viêm không steroid và các loại thuốc kháng sinh.
4. Tổn thương gan do môi trường: Tiếp xúc với các chất độc hóa học và thuốc trừ sâu, thuốc trừ cỏ và các chất gây ô nhiễm trong môi trường có thể gây tổn thương gan.
5. Bệnh lý nội tiết: Một số bệnh lý nội tiết như bệnh tiểu đường, bệnh tăng huyết áp, béo phì và rối loạn chuyển hóa cũng có thể gây tổn thương gan.
6. Di truyền: Một số tình trạng di truyền như xơ gan gia đình, bệnh Wilson và bệnh Alpha-1 antitrypsin có thể gây tổn thương gan.
Tổn thương gan có thể dẫn đến các triệu chứng như mệt mỏi, đau bụng, sự mất cân bằng dinh dưỡng, sự giảm chức năng gan và các vấn đề sức khỏe nghiêm trọng như xơ gan, ung thư gan và suy gan. Điều trị tổn thương gan phụ thuộc vào nguyên nhân và mức độ tổn thương. Đôi khi, việc thay đổi lối sống lành mạnh, kiểm soát cân nặng, ngừng sử dụng rượu và thuốc lá, và ăn một chế độ ăn uống lành mạnh có thể giúp phục hồi gan. Trong một số trường hợp nghiêm trọng, có thể cần phải sử dụng các loại thuốc hoặc thực hiện các quá trình điều trị đặc biệt như cấy ghép gan.
Danh sách công bố khoa học về chủ đề "tổn thương gan":
Một kỹ thuật mới sử dụng việc tuần hoàn liên tục dòng dịch perfusion của gan chuột trong tình trạng tại chỗ, lắc gan trong môi trường đệm in vitro, và lọc mô qua lưới nylon, đạt được việc chuyển đổi khoảng 50% gan thành các tế bào parenchymal nguyên vẹn, tách biệt. Các môi trường perfusion bao gồm: (a) dung dịch Hanks không chứa canxi có 0,05% collagenase và 0,10% hyaluronidase, và (b) dung dịch Hanks không chứa magiê và canxi có 2 mM ethylenediaminetetraacetate. Các nghiên cứu sinh hóa và hình thái học chỉ ra rằng các tế bào tách biệt này có khả năng sống sót. Chúng hô hấp trong môi trường có chứa ion canxi, tổng hợp glucose từ lactate, không thấm với inulin, không nhuộm bằng trypan blue, và giữ nguyên tính toàn vẹn cấu trúc của chúng. Kính hiển vi điện tử của các sinh thiết được lấy trong và sau khi perfusion cho thấy rằng các desmosome bị cắt đứt nhanh chóng. Các vùng chứa hemidesmosome của màng tế bào bị lún vào và có vẻ như bị chèn ra và di chuyển về phía trung tâm. Tuy nhiên, các kết nối chặt và ngắt vẫn tồn tại trên các tế bào nguyên vẹn, tách biệt, giữ lại các đoạn nhỏ của tế bào chất từ các tế bào parenchymal trước đó. Các tế bào không giữ kết nối chặt và ngắt thể hiện sự sưng phồng của các bào vacuole Golgi và các bào vacuole trong tế bào chất ngoại vi. Sự hình thành vacuole tế bào chất trong một tỷ lệ nhỏ các tế bào và sự mất potassium là những dấu hiệu duy nhất của tổn thương tế bào được phát hiện. Theo các tham số khác được đo, các tế bào tách biệt tương đương với các tế bào parenchymal gan bình thường tại chỗ về hình dáng và chức năng.
Nghiên cứu trước đây của chúng tôi đã chứng minh sự gia tăng biểu hiện của protein sốc nhiệt (Hsp) 90 trong da của bệnh nhân xơ cứng bì hệ thống (SSc). Mục tiêu của chúng tôi là đánh giá nồng độ Hsp90 trong huyết tương ở bệnh nhân SSc và xác định mối liên quan của nó với các đặc điểm liên quan đến SSc. Có 92 bệnh nhân SSc và 92 người đối chứng khỏe mạnh được sắp xếp theo độ tuổi và giới tính được tuyển chọn cho phân tích cắt ngang. Phân tích dọc bao gồm 30 bệnh nhân bị SSc kèm bệnh phổi kẽ (ILD) được điều trị thường xuyên với cyclophosphamide. Hsp90 gia tăng ở bệnh nhân SSc so với nhóm đối chứng khỏe mạnh. Hsp90 tương quan dương tính với protein C phản ứng và tương quan âm tính với các xét nghiệm chức năng phổi như dung tích sống gắng sức và khả năng khuếch tán cho cacbon monoxide (DLCO). Ở bệnh nhân xơ cứng bì hệ thống da lan rộng (dcSSc), Hsp90 tương quan dương tính với thang điểm da Rodnan được sửa đổi. Ở bệnh nhân SSc-ILD được điều trị bằng cyclophosphamide, không thấy sự khác biệt về Hsp90 giữa lúc bắt đầu và sau 1, 6, hoặc 12 tháng điều trị. Tuy nhiên, Hsp90 ban đầu có thể dự đoán sự thay đổi DLCO sau 12 tháng. Nghiên cứu này chỉ ra rằng nồng độ Hsp90 trong huyết tương gia tăng ở bệnh nhân SSc so với nhóm đối chứng khỏe mạnh cùng độ tuổi và giới tính. Hsp90 gia tăng ở bệnh nhân SSc có liên quan với hoạt động viêm gia tăng, chức năng phổi kém hơn và trong dcSSc, với mức độ tổn thương da. Hsp90 trong huyết tương ban đầu có thể dự đoán sự thay đổi DLCO sau 12 tháng ở bệnh nhân SSc-ILD điều trị bằng cyclophosphamide.
U tế bào thần kinh đệm đậm độ cao dị sản đáp ứng hóa trị tốt hơn so với u tế bào thần kinh đệm cấp độ cao. Chúng tôi đã tiến hành điều tra, trong một thử nghiệm ngẫu nhiên có đối chứng đa trung tâm, xem liệu hóa trị bổ trợ procarbazine, lomustine và vincristine (PCV) có cải thiện thời gian sống toàn bộ (OS) ở bệnh nhân được chẩn đoán mới với u tế bào thần kinh đệm đậm độ cao dị sản hoặc u tế bào thần kinh đệm-astrocytomas dị sản không.
Điểm cuối chính của nghiên cứu là OS; các điểm cuối phụ là thời gian sống không bệnh (PFS) và độc tính. Bệnh nhân được chỉ định ngẫu nhiên hoặc chỉ xạ trị 59,4 Gy trong 33 liều, hoặc cùng xạ trị tiếp sau là sáu chu kỳ hóa trị PCV chuẩn (RT/PCV). Xóa đoạn 1p và 19q được đánh giá bằng phương pháp lai huỳnh quang tại chỗ.
Tổng cộng có 368 bệnh nhân được đưa vào nghiên cứu. Thời gian theo dõi trung vị là 60 tháng và 59% bệnh nhân đã tử vong. Ở nhánh RT, 82% bệnh nhân với khối u tiến triển nhận được hóa trị. Ở 38% bệnh nhân ở nhánh RT/PCV, PCV bổ trợ bị ngừng do độc tính. Thời gian sống OS sau RT/PCV là 40,3 tháng so với 30,6 tháng sau chỉ điều trị RT (P = .23). RT/PCV gia tăng thời gian PFS so với chỉ điều trị RT (23 so với 13,2 tháng; P = .0018). 25% bệnh nhân được chẩn đoán có mất kết hợp 1p/19q; 74% nhóm này vẫn còn sống sau 60 tháng. RT/PCV không cải thiện thời gian sống trong nhóm bệnh nhân có mất 1p/19q.
Hóa trị PCV bổ trợ không kéo dài OS nhưng làm tăng PFS ở u tế bào thần kinh đệm đậm độ cao dị sản. Mất kết hợp 1p/19q là đặc điểm xác định một nhóm u thần kinh đệm có tiên lượng tốt. Không có nhóm di truyền nào được xác định có lợi về OS từ PCV bổ trợ.
Mặc dù các khái niệm ban đầu về liệu pháp tế bào gốc nhằm thay thế mô bị mất, nhưng bằng chứng gần đây đã gợi ý rằng cả tế bào gốc và tiền thân đều thúc đẩy phục hồi thần kinh sau thiếu máu cục bộ thông qua các yếu tố tiết ra giúp phục hồi khả năng tái cấu trúc của não bị tổn thương. Cụ thể, các túi ngoại tiết (EVs) từ các tế bào gốc như exosomes đã được đề xuất gần đây có vai trò trung gian cho các tác dụng phục hồi của tế bào gốc. Để xác định liệu EVs có thực sự cải thiện suy giảm thần kinh sau thiếu máu cục bộ và tái cấu trúc não hay không, chúng tôi đã so sánh có hệ thống các tác động của các túi ngoại tiết (MSC-EVs) từ tế bào gốc trung mô (MSCs) so với MSCs được truyền i.v. vào chuột trong các ngày 1, 3 và 5 (MSC-EVs) hoặc ngày 1 (MSCs) sau khi xảy ra thiếu máu cục bộ não tiêu điểm ở chuột C57BL6. Trong 28 ngày sau khi đột quỵ, các điểm yếu về phối hợp vận động, tổn thương não trên mô học, phản ứng miễn dịch trong máu ngoại vi và não, cùng những thay đổi về tạo mạch và sinh trưởng tâm thần kinh đã được phân tích. Cải thiện suy giảm thần kinh và bảo vệ thần kinh dài hạn kết hợp với tăng cường tạo mạch thần kinh và thần kinh đã được ghi nhận ở các con chuột bị đột quỵ nhận EVs từ hai dòng MSC nguồn gốc tủy xương khác nhau. Việc sử dụng MSC-EV mô phỏng chính xác các phản ứng của MSCs và kéo dài suốt giai đoạn quan sát. Mặc dù sự xâm nhập của tế bào miễn dịch não không bị ảnh hưởng bởi MSC-EVs, sự suy giảm miễn dịch sau thiếu máu cục bộ (tức là B-cell, tế bào giết tự nhiên và lymphopenia tế bào T) đã giảm bớt trong máu ngoại vi ở 6 ngày sau thiếu máu cục bộ, cung cấp môi trường ngoại vi thích hợp cho tái cấu trúc não thành công. Vì các nghiên cứu gần đây cho thấy MSC-EVs an toàn với con người, nghiên cứu này cung cấp bằng chứng lâm sàng quan trọng cần thiết cho các nghiên cứu chứng minh nhanh chóng trong bệnh nhân đột quỵ.
Cấy ghép các tế bào gốc trung mô (MSCs) cung cấp một phương pháp tiếp cận hỗ trợ quan trọng bên cạnh việc làm tan cục máu đông để điều trị đột quỵ thiếu máu cục bộ. Tuy nhiên, MSCs không tích hợp vào các mạng lưới thần kinh cư trú mà hoạt động gián tiếp, gây bảo vệ thần kinh và thúc đẩy tái sinh thần kinh. Mặc dù cơ chế MSCs hoạt động còn chưa rõ ràng, bằng chứng gần đây đã gợi ý rằng các túi ngoại tiết (EVs) có thể chịu trách nhiệm cho các tác dụng gây ra bởi MSCs dưới điều kiện sinh lý và bệnh lý. Nghiên cứu hiện tại đã chứng minh rằng EVs không thua kém MSCs trong mô hình đột quỵ động vật gặm nhấm. EVs gây bảo vệ thần kinh lâu dài, thúc đẩy tái sinh thần kinh và phục hồi chức năng thần kinh, và điều tiết các phản ứng miễn dịch sau đột quỵ ngoại biên. Ngoài ra, vì EVs dung nạp tốt ở người theo báo cáo trước đó, việc sử dụng EVs trong điều kiện lâm sàng có thể mở đường cho một định nghĩa điều trị đột quỵ mới và sáng tạo mà không có các tác dụng phụ dự kiến liên quan đến cấy ghép tế bào gốc.
- 1
- 2
- 3
- 4
- 5
- 6
- 7